05 April 2010

Coaxial cables

A coaxial cable is one that consists of two conductors that share a common axis. The inner conductor is typically a straight wire, either solid or stranded and the outer conductor is typically a shield that might be braided or a foil.

Coaxial cable is a cable type used to carry radio signals, video signals, measurement signals and data signals. Coaxial cables exists because we can't run open-wire line near metallic objects (such as ducting) or bury it. We trade signal loss for convenience and flexibility. Coaxial cable consists of an insulated ceter conductor which is covered with a shield. The signal is carried between the cable shield and the center conductor. This arrangement give quite good shielding agains noise from outside cable, keeps the signal well inside the cable and keeps cable characteristics stable.

Coaxial cables and systems connected to them are not ideal. There is always some signal radiating from coaxial cable. Hence, the outer conductor also functions as a shield to reduce coupling of the signal into adjacent wiring. More shield coverage means less radiation of energy (but it does not necessarily mean less signal attenuation).

Coaxial cable are typically characterized with the impedance and cable loss. The length has nothing to do with a coaxial cable impedance. Characteristic impedance is determined by the size and spacing of the conductors and the type of dielectric used between them. For ordinary coaxial cable used at reasonable frequency, the characteristic impedance depends on the dimensions of the inner and outer conductors. The characteristic impedance of a cable (Zo) is determined by the formula 138 log b/a, where b represents the inside diameter of the outer conductor (read: shield or braid), and a represents the outside diameter of the inner conductor.

Most common coaxial cable impedances in use in various applications are 50 ohms and 75 ohms. 50 ohms cable is used in radio transmitter antenna connections, many measurement devices and in data communications (Ethernet). 75 ohms coaxial cable is used to carry video signals, TV antenna signals and digital audio signals. There are also other impedances in use in some special applications (for example 93 ohms). It is usually no point in trying to get something very little different for some marginal benefit, because standard cables are easy to get, cheap and generally very good. Different impedances have different characteristics. For maximum power handling, somewhere between 30 and 44 Ohms is the optimum. Impedance somewhere around 77 Ohms gives the lowest loss in a dielectric filled line. 93 Ohms cable gives low capacitance per foot. It is practically very hard to find any coaxial cables with impedance much higher than that.

The characteristic impedance of a coaxial cable is determined by the relation of outer conductor diameter to inner conductor diameter and by the dielectric constant of the insulation. The impednage of the coaxial cable chanes soemwhat with the frequency. Impedance changes with frequency until resitance is a minor effect and until dielectric dielectric constant is table. Where it levels out is the "characteristic impedance". The freqnency where the impedance matches to the characteristic impedance varies somwehat between different cables, but this generally happens at frequency range of around 100 kHz (can vary).

Essential properties of coaxial cables are their characteristic impedance and its regularity, their attenuation as well as their behaviour concerning the electrical separation of cable and environment, i.e. their screening efficiency. In applications where the cable is used to supply voltage for active components in the cabling system, the DC resistance has significance. Also the cable velocity information is needed on some applications. The coaxial cable velocity of propagation is defined by the velocity of the dielectric. I

Return loss is one number which shows cable performance meaning how well it matches the nominal impedance. Poor cable return loss can show cable manufacturing defects and installation defects (cable damaged on installation). With a good quality coaxial cable in good condition you generally get better than -30 dB return loss, and you should generally not got much worse than -20 dB. Return loss is same thing as VSWR term used in radio world, only expressed differently (15 dB return loss = 1.43:1 VSWR, 23 dB return loss = 1.15:1 VSWR etc.).

source : www.epanorama.net

Related Posts by Categories

0 komentar: